首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   447篇
  免费   47篇
  国内免费   1篇
  2021年   7篇
  2020年   3篇
  2019年   4篇
  2018年   4篇
  2017年   2篇
  2016年   6篇
  2015年   16篇
  2014年   21篇
  2013年   14篇
  2012年   26篇
  2011年   33篇
  2010年   14篇
  2009年   22篇
  2008年   10篇
  2007年   16篇
  2006年   28篇
  2005年   11篇
  2004年   26篇
  2003年   20篇
  2002年   18篇
  2001年   28篇
  2000年   22篇
  1999年   9篇
  1998年   10篇
  1997年   7篇
  1996年   4篇
  1995年   3篇
  1994年   3篇
  1993年   4篇
  1992年   10篇
  1991年   7篇
  1990年   8篇
  1989年   8篇
  1988年   12篇
  1987年   8篇
  1986年   5篇
  1985年   4篇
  1984年   2篇
  1983年   4篇
  1982年   3篇
  1981年   6篇
  1979年   4篇
  1976年   3篇
  1975年   2篇
  1972年   3篇
  1970年   3篇
  1969年   3篇
  1968年   2篇
  1967年   1篇
  1953年   1篇
排序方式: 共有495条查询结果,搜索用时 15 毫秒
121.

Background

Preterm birth is an enormous public health problem, affecting over 12% of live births and costing over $26 billion in the United States alone. The causes are complex, but twin studies support the role of genetics in determining gestation length. Despite widespread use of the mouse in studies of the genetics of preterm birth, there have been few studies that actually address the precise natural gestation length of the mouse, and to what degree the timing of labor and birth is genetically determined.

Methodology/Principal Findings

To further develop the mouse as a genetic model of preterm birth, we developed a high-throughput monitoring system and measured the gestation length in 15 inbred strains. Our results show an unexpectedly wide variation in overall gestation length between strains that approaches two full days, while intra-strain variation is quite low. Although litter size shows a strong inverse correlation with gestation length, genetic difference alone accounts for a significant portion of the variation. In addition, ovarian transplant experiments support a primary role of maternal genetics in the determination of gestation length. Preliminary analysis of gestation length in the C57BL/6J-Chr#A/J/NaJ chromosome substitution strain (B.A CSS) panel suggests complex genetic control of gestation length.

Conclusions/Significance

Together, these data support the role of genetics in regulating gestation length and present the mouse as an important tool for the discovery of genes governing preterm birth.  相似文献   
122.
Current diagnostic screening strategies based on karyotyping or fluorescent in situ hybridization (FISH) for detection of chromosomal abnormalities in chronic lymphocytic leukemia (CLL) are laborious, time-consuming, costly, and have limitations in resolution. Multiplex ligation-dependent probe amplification (MLPA) can simultaneously detect copy number changes of multiple loci in one simple PCR reaction, making it an attractive alternative to FISH. To enhance the clinical robustness and further harness MLPA technology for routine laboratory operations, we have developed and validated a protocol for comprehensive, automatic data analysis and interpretation. A training set of 50 normal samples was used to establish reference ranges for each individual probe, for the calling of statistically significant copy number changes. The maximum normal ranges of 2 and 3 standard deviations (SD) are distributed between 0.82 and 1.18 (Mean ± 2SD, 95% CI, P = 0.05), and between 0.73 and 1.27 (Mean ± 3SD, 99% CI, P = 0.01), respectively. We found an excellent correlation between MLPA and FISH with 93.6% concordance (P<0.0001) from a testing cohort of 100 clinically suspected CLL cases. MLPA analyses done on 94/100 patients showed sensitivity and specificity of 94.2% and 92.9%, respectively. MLPA detected additional copy number gains on 18q21.1 and chromosome 19, and novel micro-deletions at 19q13.43 and 19p13.2 loci in six samples. Three FISH-failed samples were tested positive by MLPA, while three 13q- cases with a low percentage of leukemia cells (7%, 12% and 19%) were not detected by MLPA. The improved CLL MLPA represents a high-throughput, accurate, cost-effective and user-friendly platform that can be used as a first-line screening test in a clinical laboratory.  相似文献   
123.

Background

Although both smoking and respiratory complaints are very common, tools to improve diagnostic accuracy are scarce in primary care. This study aimed to reveal what inflammatory patterns prevail in clinically established diagnosis groups, and what factors are associated with eosinophilia.

Method

Induced sputum and blood plasma of 59 primary care patients with COPD (n = 17), asthma (n = 11), chronic bronchitis (CB, n = 14) and smokers with no respiratory complaints ('healthy smokers', n = 17) were collected, as well as lung function, smoking history and clinical work-up. Patterns of inflammatory markers per clinical diagnosis and factors associated with eosinophilia were analyzed by multiple regression analyses, the differences expressed in odds ratios (OR) with 95% confidence intervals.

Results

Multivariately, COPD was significantly associated with raised plasma-LBP (OR 1.2 [1.04–1.37]) and sTNF-R55 in sputum (OR 1.01 [1.001–1.01]), while HS expressed significantly lowered plasma-LBP (OR 0.8 [0.72–0.95]). Asthma was characterized by higher sputum eosinophilic counts (OR 1.3 [1.05–1.54]), while CB showed a significantly higher proportion of sputum lymphocytic counts (OR 1.5 [1.12–1.9]). Sputum eosinophilia was significantly associated with reversibility after adjusting for smoking, lung function, age, gender and allergy.

Conclusion

Patterns of inflammatory markers in a panel of blood plasma and sputum cells and mediators were discernable in clinical diagnosis groups of respiratory disease. COPD and so-called healthy smokers showed consistent opposite associations with plasma LBP, while chronic bronchitics showed relatively predominant lymphocytic inflammation compared to other diagnosis groups. Only sputum eosinophilia remained significantly associated with reversibility across the spectrum of respiratory disease in smokers with airway complaints.  相似文献   
124.
There is a need for efficient modeling strategies which quickly lead to reliable mathematical models that can be applied for design and optimization of (bio)-chemical processes. The serial gray box modeling strategy is potentially very efficient because no detailed knowledge is needed to construct the white box part of the model and because covenient black box modeling techniques like neural networks can be used for the black box part of the model. This paper shows for a typical biochemical conversion how the serial gray box modeling strategy can be applied efficiently to obtain a model with good frequency extrapolation properties. Models with good frequency extrapolation properties can be applied under dynamic conditions that were not present during the identification experiments. For a given application domain of a model, this property can be used to considerably reduce the number of identification experiments. The serial gray box modeling strategy is demonstrated to be successful for the modeling of the enzymatic conversion of penicillin G In the concentration range of 10-100 mM and temperature range of 298-335 K. Frequency extrapolation is shown by using only constant temperatures in the (batch) identification experiments, while the model can be used reliable with varying temperatures during the (batch) validation experiments. No reliable frequency extrapolation properties could be obtained for a black box model, and for a more knowledge-driven white box model reliable frequency extrapolation properties could only be obtained by incorporating more knowledge in the model. Copyright 1999 John Wiley & Sons, Inc.  相似文献   
125.
It was previously shown that glucagon and epinephrine have additive effects on both gluconeogenic and glycogenolytic flux. However, the changes in gluconeogenic substrates may have been limiting and thus may have prevented a synergistic effect on gluconeogenesis and a reciprocal inhibitory effect on glycogenolysis. Thus the aim of the present study was to determine if glucagon has a greater gluconeogenic and a smaller glycogenolytic effect in the presence of both epinephrine and clamped gluconeogenic precursors. Two groups (Epi and G + Epi + P) of 18-h-fasted conscious dogs were studied. In Epi, epinephrine was increased, and in G + Epi + P, glucagon and epinephrine were increased. Gluconeogenic precursors (lactate and alanine) were infused in G + Epi + P to match the rise that occurred in Epi. Insulin and glucose levels were also controlled and were similar in the two groups. Epinephrine and precursor administration increased glucagon's effect on gluconeogenesis (4.5-fold; P < 0.05) and decreased glucagon's effect on glycogenolysis (85%; P = 0.08). Thus, in the presence of both hormones, and when the gluconeogenic precursor supply is maintained, gluconeogenic flux is potentiated and glycogenolytic flux is inhibited.  相似文献   
126.
Epinephrine increases net hepatic glucose output (NHGO) mainly via increased gluconeogenesis, whereas glucagon increases NHGO mainly via increased glycogenolysis. The aim of the present study was to determine how the two hormones interact in controlling glucose production. In 18-h-fasted conscious dogs, a pancreatic clamp initially fixed insulin and glucagon at basal levels, following which one of four protocols was instituted. In G + E, glucagon (1.5 ng x kg(-1) x min(-1); portally) and epinephrine (50 ng x kg(-1) x min(-1); peripherally) were increased; in G, glucagon was increased alone; in E, epinephrine was increased alone; and in C, neither was increased. In G, E, and C, glucose was infused to match the hyperglycemia seen in G + E ( approximately 250 mg/dl). The areas under the curve for the increase in NHGO, after the change in C was subtracted, were as follows: G = 661 +/- 185, E = 424 +/- 158, G + E = 1178 +/- 57 mg/kg. Therefore, the overall effects of the two hormones on NHGO were additive. Additionally, glucagon exerted its full glycogenolytic effect, whereas epinephrine exerted its full gluconeogenic effect, such that both processes increased significantly during concurrent hormone administration.  相似文献   
127.

Background

Pseudomonas, a soil bacterium, has been observed as a dominant genus that survives in different habitats with wide hostile conditions. We had a basic assumption that the species level variation in 16S rDNA sequences of a bacterial genus is mainly due to substitutions rather than insertion or deletion of bases. Keeping this in view, the aim was to identify a region of 16S rDNA sequence and within that focus on substitution prone stretches indicating species level variation and to derive patterns from these stretches that are specific to the genus.

Results

Repeating elements that are highly conserved across different species of Pseudomonas were considered as guiding markers to locate a region within the 16S gene. Four repeating patterns showing more than 80% consistency across fifty different species of Pseudomonas were identified. The sub-sequences between the repeating patterns yielded a continuous region of 495 bases. The sub-sequences after alignment and using Shanon's entropy measure yielded a consensus pattern. A stretch of 24 base positions in this region, showing maximum variations across the sampled sequences was focused for possible genus specific patterns. Nine patterns in this stretch showed nearly 70% specificity to the target genus. These patterns were further used to obtain a signature that is highly specific to Pseudomonas. The signature region was used to design PCR primers, which yielded a PCR product of 150 bp whose specificity was validated through a sample experiment.

Conclusions

The developed approach was successfully applied to genus Pseudomonas. It could be tried in other bacterial genera to obtain respective signature patterns and thereby PCR primers, for their rapid tracking in the environmental samples.
  相似文献   
128.
Mechanical circulatory support (MCS) devices are blood pumps that support or replace the function of the native heart. It is important to minimize the material stresses in the flexing blood sac or diaphragm in order to increase the duration of support these devices can provide. An axisymmetric finite element model of a pusherplate blood pump was constructed to evaluate the effect of various design parameters on the material stresses in a segmented poly(ether polyurethane urea) seamless blood sac. The design parameters of interest were the sac thickness, pump case wall taper, and radius of the sac between the pusherplate and pump case wall. The analysis involved a quasi-static analysis of the systolic ejection phase of the pump. The finite element solution suggested that the principal stresses and strains increased almost linearly with sac thickness. The pump case wall taper had the largest effect; decreasing the peak principal stresses by approximately 35% when the pump case was straight versus tapered. Lastly, the model demonstrated that the radius of the blood sac between the pusherplate and pump case wall had little or no effect on the magnitude of the blood sac stresses. Therefore, this study suggests that in order to minimize the stresses in a blood sac of a pusherplate blood pump, a straight pump case should be chosen with the thinnest sac.  相似文献   
129.
130.
We seek to create useful biological diversity by exploiting the modular nature of genetic information. In this report we describe experiments that focus on the modular nature of plasmid cloning vectors. Bacterial plasmids are modular entities composed of origins of replication, selectable markers and other components. We describe a new ligation-independent cloning method that allows for rapid and seamless assembly of vectors from component modules. We further demonstrate that gene cloning can be accomplished simultaneously with assembly of a modular vector. This approach provides considerable flexibility as it allows for ‘menu driven’ cloning of genes into custom assembled modular vectors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号